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PREFACE

The MUSAC II methodology described in this technical note is a

revision of the original MUSAC model described in the draft report:

“MUSAC--A Representation of the Passive Sonar Classification Process,”

SRI Project 1318-240, November 1973. The major revisions to the method-

ology include a new formulation of a multifeature sonar detection model,

different likelihood calculations, and a more generalized decision making

procedure. This technical note provides a concise theoretical description

of the MUSAC II methodology; the new concepts have not, as yet, been

tested by a computer implementationof the methodology.

The purpose of the research was to create a methodology that

mathematically representa the passive sonar classification process in a

multiple target environment. The MUSAC II methodology is not intended

to be a software package for real classificationhardware; instead,

MUSAC 11 is intended to be used by analysts

tems. The primary application of the MUSAC

detailed Monte Carlo simulation modeling of

The methodology will provide classification

to initiate tactics in an engagement model.

to study passive sonar sys-

11 methodology will be for

acoustic warfare engagements.

decisions that can be used

The MUSAC II methodology

uses the standard acoustic parameters of classical sonar detection theory.

By using a physical-based approach, the methodology can represent the

inherent classification capability of a sonar system, particularly the
I

sensitivity to signal-to-noiseratios. The alternative

try to duplicate the man/machine classification process

the human perception of classification clues. MUSAC II

duplicate the man/machine classification

determines classificationdecisions from

approach would

by simulating

does not try to I

process, instead MUSAC II
/

the fundamental information

I

v



content of the acoustics. MUSAC II represents an ideal sonar classifier ,

in the same sense that classical theory represents an ideal sonar

detector. The detection capability of detection models can be adjusted

to simulate real systems; in the same way, the classification capability

of MUSAC II can be adjusted to simulate real passive sonar systems.

The MUSAC II project was conceived as a continuation of a classifi-

cation model development effort under the sponsorship of James G. Smi’th,

Code 431, Office of Naval Research. As part of an ONR reorganization,

the MUSAC 11 project was transferred to Code 230. After evaluating the

potential application and merit of the methodology relative to Code 230

program objectives, the project was redirected to tasks involving tactical

development and evaluation research. This technical note reports on the

partially completed research of the original tasking.

The authors are indebted to G. W. Black and W. F. Frye who were the

originators of the basic ideas of the MUSAC methodology.

vi
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I INTRODUCTION

The Multiple Source Acoustic Classification (MUSAC) methodology is

a mathematical representation of passive sonar classification. The

principal attribute of the MUSAC 11 methodology is its multiple-target

capability. Almost without exception, other models allow for only one

target at a time. The methodology is based on the detection of acoustic

features. In this way, spectral and spatial acoustic information is

included so that the sonar systems’ bearing and frequency resolution can

be related to the classification outcome. The acoustic features are

defined by the analyst; the features can be narrowband, broadband, or

modulated broadband classification

lines). The acoustic features are

bles. The stochastic structure of

random variations of acoustic data.

clues (for example, Lofar or Demon

represented by Bernoulli random vari-

the model provides for realistic

A dynamic encounter is represented

by a time-step simulation. The MUSAC II methodology is structured for

sequential decision-makingby the update of classification information

and the change in kinematic variables over time. From Monte Carlo

replications, the probability of making selected tactical and classifi-

cation decisions can be estimated.

The MUSAC II methodology uses.a Bayesian decision-making approach.

Figure 1 shows the model flow. The analyst first formulates a set of

multiple-target hypotheses that will be used in the engagement simulation.

The probability of detecting specified acoustic features is calculated

at each time step, for each sonar look angle, and for each hypothesis

(the true target configuration is usually one of the hypotheses). These

detection probabilities are then used, in conjunction with the observed

random features, to calculate the likelihood that the data would be

1



observed if the hypothesis were true. The likelihoods and the prior

probabilities are then combined to produce the posterior probability

that the ith hypothesis is true,“given the observed data. The analyst

defines tactical or classification decisions that are to be simulated,

he defines’the value of making ’thedecision when each hypothesis is
,,,,..

true~ and he defines tiaitie thresholds. With this decision structure,
,4~ ..

MUSAC II determines if a decision is to be made at the present time step;

if notY another time-step”is simu”lat”edand more data collected.
,.,
If a

decision is made, ‘thedec’isi’onwith the largest average’value is chosen.

The above brief”outline of’the MUSAC 11 methodology is discussed in
,,,,:

,. , ,,..
detail in the four following chapters, as indicated on Figure 1.

,,,,

,, ,., ,,,

CHAPTER TITLES:

11 HYPOTHESIS
FORMULATION 111SONAR

OETECTION
r------ -1 MOOEL
1 I

IV HYPOTHESIS

PROBABILITY

CALCULATION

I ------- . - - 1 V DECISION

I
MAKING

I
1
I
I
1 I

I

I
1

1

I
I
I_ -1-- -----

1“
:L -— -----
I

I
1

FIGURE 1 MUSAC IIMODEL FLOW

●
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Hypothesis formulation is the most critical part of the methodology
G

because the hypothesis set directly determines the possible target group

configurations under consideration, and because the size of the hypothesis

set determines the computationalburden required to execute the model.

The formulation of multitarget hypotheses are unique to MUSAC II and are

very powerful in that they allow the multitarget classification problem

to be addressed.

The multitarget hypothesis set consists of ordered arrangements of

two components: single-target classes and target tracks.

A. Single-Target Classes

The set of single-target classes is a list of target types that the

observer expects to encounter. For any particular application of MUSAC II,

the set of single-target classes is defined by the analyst. Depending

on the problem at hand, the single-target classes can be very general

(submarine,high value warship, low value warship, merchant) or quite

de~ailed (688 class submarine, Nimitz class aircraft’carrier). The level

of detail of the set of single-target.classes dictates the complexity of

the acoustic functions that define the uniqueness of a single-target

class within the model.

Each single-target class is defined by a set of functions that

describe its acoustic characteristics. These functions are like a library

of acoustic signatures that an observer would compare to his observations

to make classificationdecisions. In MUSAC II, however, the acoustic

functions are in terms of average source levels instead of received sig-

nal levels, as would be the case with real signatures. There are three

3



types of functions that describe a single-target class: narrowband,

broadband, and modulated broadband functions.

The narrowband characteristics are described by a set of functions

that define the average Lofar line level at specified frequencies,. The

narrowband functions have parameters of target speed and aspect angle.

Different single-target classes may have different numbers of Lofar lines

or different line levels. The total number of narrowband features in the

model is determined by the total number of different line frequencies.

If a target does not generate a Lofar line at a particular frequency in

the set,

assigned

The

then that narrowband function

zero power at that frequency.

broadband characteristics are

associated with the target is

described by a set of functions

that define the average source spectrum level of the target classes.

These functions have parameters of frequency, target speed, and aspect

angle. The broadband spectrum can be filtered into a set of broadband

features. Thus rough classification clues can be derived from the pres-

ence or absence of low, medium, or high frequency broadband radiation.

The broadband spectrum also acts as noise when detecting Lofar and Demon

lines.

The modulated broadband characteristics are described by a set of

functions that define the average modulation levels for a defined set of

Demon lines. The parameters for these functions include broadband fre-

quency, target speed, and aspect angle. To each Demon line, a modulation-

level function is assigned; whereas, to each Lofar line, a line-level

value is assigned. Thus the description of Demon features is more compli-

cated than Lofar features.

Besides the user-defined single target classes there is a special

target class, designated “nontarget,” that will usually be included in

the set of single-target classes. The nontarget is characterized by

4



zero power for all the acoustic characteristics. This special target c=

class is required to model the detection of the

titular time step the observer has not detected

actual targets, then a hypothesis that contains

at the appropriate bearings will receive a high

z?!
targets. If at a par- CG

r-
*

one or more of the <e
w
-

the class of nontarget w
k

likelihood value.

B. Target Tracks

The second component in formulatingmultitarget hypotheses is a

set of target tracks. A track is defined by the target’s initial

position and its course and speed as a function of time. From these

functions the parameters of range, bearing, speed, and aspect angle of

the target on a particular track can be calculated. It is important to

note that the tracks are not limited to straight lines, and that only

the target positions at the current time step need to be known. That is,

if MUSAC II is formulated as an engagement model, then the decisions at

one time step can affect the position of the observer and targets in

later time steps.

Target tracks are thought of as having an existence independent of

the target that is moving”on them. The reason for this point of view is

that hypothetical target configurationsare constructed by assigning

single-target classes to the tracks. The set of tracks will always

include the tracks of the

applications of MUSAC II,

to the true tracks.

one true target configuration. In some

hypothetical tracks may be defined in addition

For most applications, only the tracks of the true targets will be

defined. This assumes that the observer knows the range and bearing to

the actual targets during the engagement. The primary purpose of

defining the target tracks in MUSAC II is to

kinematic parameters for use in the acoustic

provide the necessary

characteristic functions.

m
es

5



The acoustic functions and the track parameters are a

an acoustic signature library that the observer would

observations for classification decision making. The

assumption

signatures

targets.

implies that the observer selects from the

representation of

compare to his

perfect tracking

library only those

that correspond to the range, speed, and aspect of the true

Hypothetical tracks can be defined for the purpose of modeling

target position uncertainty. When additional tracks are defined, the

MUSAC 11 methodology also performs a localization function “inthe sense that

a hypothesis with target position close to the true target position will

receive a higher likelihood value than a hypothesis that places targets

away from the observed position. The addition of hypothetical tracks

will result in more hypotheses. The most limiting feature of the MUSAC II

methodology is the potential large size of the hypothesis set. For any

particular application ~f the model, the analyst should try to minimize

the number of hypotheses to

c. Multitarget Hypotheses

save unnecessary calculations.

The complete multitarget hypothesis consists of an ordered arrange-

ment of the possible single-target classes assigned to particular tracks.

The formulation is usually done by combinatorial methods for combining

the single-target classes with the target tracks. The hypothesis set is

under the control of the analyst and should reflect the assumptions about

the classification problem that is being studied.

To formulate the hypothesis set by the combinatorial method, all

possible n-tuples of the single-target classes are enumerated. For this

type of hypothesis structuring there will be kn multitarget hypotheses

generated, where k is the number of single target classes and n is the

total number of tracks. For example, let (HVU, LVU, NON) be a set of

6



single-target classes, where HVU is a high value unit, LVU is a low

value unit, and NON is the special target class nontarget. Also assume

that two tracks have been defined. Then the set of hypotheses is the

set of 2-tuples, in which the first element is the target class assigned

to track #1 and the second element of the target class assigned to

track #2:

HI = [HVU,HVU] , H. = [LW,HVU] , H7 = [NON,HVU]

H2 = [Hvu, LW] , HS = {LW, LVU) , HS = [NON, LW]

H3 = {HW, NON] , He = [LW, NON] , H9 = [NON, NON]

This hypothesis formulationmight represent a

are two real targets, an HVU on track #1, and

the second hypothesis is the true hypothesis:

scenario in which there

an LW on track #2. Thus

Ho =H2. The observer

expects to encounter one or two ships that are HVUs or LWS. The single-

target class, nontarget, is required to model the detection of one or

both of the targets.

A hypothesis set that is generated by combinatorial means should be

reviewed by the analyst, and unreasonable hypotheses be deleted to avoid

unnecessary calculation. In forming the multitarget hypothesis the

analyst should consider the maximum number of targets that the observer

expects to encounter and the

single-target class within a

is unlikely to encounter two

maximum number of occurrences of a particular

hypothesis. In the previous example, if it

HWS, then the first hypothesis should be

deleted. For each hypothesis there must be a single-target class assign-

ment to each track. When the number of hypothesized targets is less than

the number of defined tracks, then the special class of nontarget is

assigned to the remaining tracks.





III SONAR DETECTION MODEL

c

The sonar detection model is based on a two-channel comparison of

time-averaged power. The inputs.to the model are source levels, noise

levels, propagationloss,etc.; the input levels are allowed to vary ran-

comly in time to simulate signal fade and jump. The outputs of the model

are the probabilities of detection of acoustic features such as Lofar

lines.” The model is a fairly simple representation of a sonar system.

The MUSAC II user may replace this model with one of his own creation, so

long as the outputs of the new model are also feature detection probabil-

ities.

A. Input Parameters

1. Subscript Definitions

The subscripts i, j, k, m, n are used in the sonar model. As

an aid to understanding the subscripted functions given later, the sub-

scripts are first discussed:

i= Hypothesis identifier; i = O designates the true
target configuration and i = 1,2,... designates
the hypothetical target configurations.

j = Feature identifier; features are associated with
frequency bands on sonar array/display combina-
tions. As an example,features j = 1,2,...,20
can be associated with 20 possible Lofar lines
from an omnidirectional array; features

j = 21,...,40 can be associated with the same
20 possible Lofar lines from a towed array;
features j = 41,42 can be associated with the low
and high bands of the BTR from a spherical array;
features j = 43,...,47 cah be associated witi five
possible Demon lines in the 1-2 kHz band; features

j = 48,...,52 can be associated with the same five
Demon lines in the 2-4 kHz band; and features

j = 53,...,57 can be associated with the same five

9



k=

m=

Demon lines in the 4-8 kHz band, where the multi-
band Demon information is from a spherical array.
Aural classification from headphone information can
be simulated by Lofar features and multiband Demon
features.

Look angle identifier. The sonar associated with a
feature is pointed in various directions. The max-
imum value of k is indexed on j so that a different
number of look angles can be specified for different
sonar arrays. For example, only one “look angle” is
needed for an omnidirectional array, whereas many
angles are needed for a preformed beam array.

Target track identifier. A set of tracks (time
varying”positions) is defined for the model. The
real target configuration is constructed by assigning
the real targets to their tracks. The hypothetical
target configurations are constructed by assigning
hypothetical targets to the tracks; nontargets (zero
power) may be included in the hypothetical config-
urations also. The m-index identifies a track;
however, a track may be assigned many different tar-
get types. The m-index, by itself, is not a target
type identifier; but the combination (i,m) does
identify a target type at a position in space and
time.

Noise type identifier; different kinds of noise can
be specified. For example, n = 1 can be sea state
noise; n = 2 can be shipping noise; and n = 3 can be
self noise.

2. Target Characteristics

The input functions that describe the single target class

characteristics are the average values of the narrowband, broadband, and

modulation levels.

F~Jm(v,a) = Average narrowband source level (dB
relative to 1 pPa2 at 1 yd); mean squared
pressure of the Lofar line associated
with the jth feature one yard from the
(i,m) target. The line level may be a
function of target speed v and aspect
angle a. The input to a computer program
would not be indexed on i and m, but
instead on a single target class 1. An
additional vector, subscripted with “ire”
and composed of integer components 4,

10



F1’~(f,v,a) =

would designate the target class A that
is associated with the (i,m) target.
Therefore, the computer input functions
would be subscripted with “~j”; however,
the equivalent subscripts “ijm” are used
to describe the model.

Average broadband source spectrum level
(dB relative to l~Pa2/Hz at 1 yd); mean
square pressure per unit frequency at
one yard from the (i,m) target. The
spectrum level is a function of frequency
f, target speed v, and aspect angle a.

Average broadband modulation level (dB
relative to 1.0); defined as the dB level
of the square of the modulation index.
The modulation index is the maximum ampli-
tude minus the minimum amplitude divided
by twice the average amplitude. The
modulation level is a function of frequency,
speed, and aspect; and it ia indexed on the
Demon line associated with the jth feature
for the (i,m) target.

30 Track Input

The tracks are calculated from input values of initial positions

and time-varying courses and speeds for the observer and targets. The tar-

get range r, relative bearing 0, and aspect angle a are then derived from

the x,y positions of the units.

X(to), y(t~) = Position of the observer at time t = to.

Xrn(tO), Ym(to) = Position of the mth target at

p(t), u(t) = Course and speed (deg, kt) of
as a function of time.

%(t), Vm(t) = Course and speed (deg, kt) of
target track as a function of

4. Environment and Sonar System Characteristics

time t= to.

the observer

the mth
time.

The input parameters that characterize the environment are the

average propagation loss and the array output average noise function. The

11



sonar system is characterized by the array output average noise function,

the beam pattern, the frequency response, the processor averaging time,

the detection threshold, the data rate, and the sonar look angles.

BJ(f,A,e) =

B;(f) =

Gj(f) =

Average propagation loss (dB); mean squared
pressure at one yard from the target divided
by mean squared pressure at a range of r nmi
from the target. Propagation loss is a
function of frequency and range and is sub-
scripted with i to denote that two propa-
gation functions could be used: one function
for the true conditions, and another function
for the hypothesized propagation conditions.

Average broadband, output noise spectrum
level (dB relative to 1 ~Pa2/Hz); mean square
pressure per unit frequency of the nth noise
source at the output of the sonar array
associated with the jth feature. It is a
function of frequency f, observer speed u,
and look angle k. If the noise is isotropic,
then~’ is the noise outside the array minus
the directivity index. In the nonisotropic
case, the value of ~’ may be a function of
look angle h. The i = O index indicates
that the true output noise spectrum level
is used for both the real and hypothetical
configurations.

Beam pattern ratio (O < B < 1); mean square
voltage when the sonar is looking at angle A
and a single point-source target “ison
bearing (3,divided by the mean square voltage
when the sonar is looking at the target. The
beam pattern depends on the array associated
with the jth feature, and the pattern is a
function of frequency.

* < 1); the nominalSide lobe ratio (O s B
value of BJ(f,l,O) when k and f3are well
separated.

Normalized frequency response ratio
(O S G < 1); output mean square pressure
(voltage) divided by input mean square
pressure for the frequency band associated
with the jth feature. The function can
include effects of hydrophore response,
band filtering, or psychoacoustic frequency
response.

12



nJ
=

Center frequency (Hz) associated with the
jth feature (geometricalmean of lower and
upper frequency limits).

Bandwidth (Hz) associated with the jth
feature. If the frequency response is a
unit rectangular function, then fJ and WJ
completely define GJ(f).

Averaging time (see) of the signal processor
associated with the jth feature.

Detection threshold (d > O); the number of
reference-channel standard deviations by
which the data channel output must exceed
the reference channel mean so that the jth
feature is detected.

Number of independent observation opportuni-
ties on the jth feature during the computer
time step (1 < ,nJ < computer time Step

divided by the signal processor averaging
time).

Value of the kth look angle (degrees from
observer’s heading) for the array associated
with the jth feature. One model design
would be to let the sonar look at only the
target bearings: ‘Jk = e~(t)o An alterna-
tive model design would be to let the sonar
look at bearings at equal increments; for
example, 6° apart with k = 1,...,60 to
cover 36@.

5. Random Process Parameters

Five input functions for the real target configuration are

calculated from a random process that is correlated in time. The input

parameters that characterize the random process are the standard deviation,

relaxation time, and mixing constant.

% = Standard deviation (dB) of the random process
on the rth input function (r = 1,2,3,4,5).

‘rr = Relaxation time (rein)of the rth random
process.

13



Cr = Mixing constant (O < c < 1) for the
random process; c = O indicates a pure
Gauss-Markov process; c = 1 indicates a
pure lambda-sigma jump process.

B. Input Parameter Random Process

Real sonar signals fade in and out and make sudden jumps. A mixed

random process that was originally proposed by Wagnery:is used to model ‘\

this phenomenon; the process is a combination of a Gauss-Markov and ;

lambda-sigma jump

smooth changes in

represents sudden

random process. The Gauss-Markov process represents

signal level, and the lambda-sigma jump process

changes in signal level.

10 General Equations

For each engagement run of the model, a different time history

of an input parameter can be generated. The input parameter used at a

given time step is calculated by drawing three independent random numbers

x> Y9 z“ With these random numbers, two zero-mean random values are

computed and then mixed together:

J, = J,_l(l-x) + S X y

K. = -ZPK._l + s 1

L. =
where

J. = lambda-sigma

K. = Gauss-Markov

L, = mixed random
added to the

jump random increment at nth time step.

random increment at nth time step.

increment at nth time step; L~ is
average value of the parameter to

calculate value of the parameter at the nth time
step.

““A Comparison of Detection Models Used in ASW Operations Analysis (U),”
D. H. Wagner Associates (October 1973).
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At =

T =

x=

y,~ =

The mixed random

L

mixing constant (O < c < 1); c = O indicates a =
pure Gauss-Markov process, c = 1 indicates a

C
r-

pure lambda-sigma jump process. *
m
w
+

standard deviation of the input parameter (dB). T
M
m
we-At’T” Gauss-Markov step-to-step Correlation;

and la~bda-sigma jump probability that a jump did
not occur during the last time step.

time step duration (rein).

Gauss-Markov relaxation time (rein),and lambda-
sigma jump mean time between jumps.

random number from a Bernoulli distribution with
parameter E(x) = 1 - p. The x = O case means that
no jumps occurred in the last time step; the x = 1
case means that at least one jump occurred in the
last time step.

random numbers from a normal distribution with zero
mean and unit variance.

process, as defined above, has the statistics: E(L.) = O,

E(L:) = S2 , and E(L~Ln_l) = S2P.

2. Generation of Input Functions

The equation that generates one of the five input functions

is given below. The other four equations are omitted because they are

similar and add nothing new to the description of the model. The ran-

domization is applied only to the input functions for the true target

configurationbecause the hypothetical signals must be based on engagement-

to-engagement average values, not on detailed knowledge of a particular

engagement.

symbol that

Notice that

ratios, not

The randomly generated input function is denoted by the same

is used in the input list, but omitting the average sign.

the generated input function is defined in units of power

dB.

15



fori=O

for i = 1,2,3,...

where

zJm (v>~) = Average narrowband source level (dB)

Apo~m = Random increment (dB); computed from the
mixed random process using the parameters
sl, ~1, andcl. AP is the same as L. in
the previous section.

= Increment (dB) that must be added to the

mean level (dB) so that the mean power (ratio)
is correctly converted. The input power is
assumed to be lognormally distributed, therefore
the increment is:

61 = st/8.68 ,

where SI is the standard deviation (dB) of the
random process on the narrowband source level.

A new random increment is computed at each time step (not explicitly

denoted), for each feature (j), and for each target (o,m). Thus, if

there are 10 time steps, 5 features, and 2 targets, then 100 random

increments will be calculated to generate the input values of narrowband

source power. The value of random increment.is assumed to be independent

of the underlying values of speed, aspect, frequency, etc.

processes

The generation of input functions from the five mixed random

produces the following functions:

pijm(v,~) = Narrowband source power (~Pa2 at 1 yd)

PfM(f,V,U) = Broadband source spectrum @Pa2/Hz at 1 yd)

MiJm(f,v,a) = Broadband modulation ratio (O < M s 1)

At(f,r) = Propagation loss ratio (A a 1) from
one yard

&(f,%~) = Broadband, array output, noise spectrum
@Pa2/Hz).
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c. Array Output Signal and Noise
r-l
l--
>
W;

The power at the outputof the sonar array is calculated for the
m
w
w

narrowband, broadband, and modulated broadband cases. +
m

1. Narrowband

The target signal that

reducing the source power by the

QiJDI =

is outside the array is calculated by

propagation loss:

P,j~(vm,*)

At(fd,rrn) “ ~

The mean square pressure from all targets at the output of the array is

then calculated by reducing the signal with the beam pattern ratio and

summing over all target sources:

s$Jk = I QtJDJ Bd(fd,~~k,%) .

In addition to the narrowbandmsignal, the following function is needed

in later calculations:

2. Broadband

The target spectrum that is outside the array is calculated by

reducing the source spectrum by the propagation loss:

Q;m(f) =
P[~(f,VM,U~)

Ai(f,rrn) “ .

The mean square pressure per unit frequency”due to all targets at the

output of the array is then calculated by reducing the individual signals

with the beam pattern ratio, summing over all target sources, and

multiplying by the frequency response:

17



The side lobe interference spectrum is also needed:

#y(f) = GJ(f) B~(f)~ Q&(f) .

Finally, the noise

all noise sources:

.-)

L.-1
m

spectrum at the output of the array is the sum from

~Jk(f) = GJ (f) ~N6’Jn(f,u,hJk) ●

n

3. Modulated Broadband

The additional increment of broadband signal power (mean squared

pressure per unit frequency) due to the modulation is calculated by multi-

plying the modulation function times the output broadband signal, summing .’

over all targets, and multiplying by one half the frequency response:

AS$’Jk(f) =
1
~GJ(f)~ Q~m(f) B~(f,hJk’,6m)MIJm(f,vm,%) .

d
m

D. Signal Processor Statistics

The mean and variance of the output of the signal processor are

required to calculate the probability of detection. The sonar model

‘assumes that the signal processor has two channels: (1) a data channel

that produces a random value from a normal distribution of mean ~ and

variance ~ ; and (2) a reference channel that produces two deterministic

parameters V* and a*2 that are measures of the background noise in which

the data signal is to be detected. The equations for the signal processor

statistics are not obvious.

sonar model, the derivation

1. Narrowband

In the interest of a short description of the

of the equations is deferred to Appendix A.

The broadband power in

RIJk =

a narrowband of width WJ is:

18



With this definition, the channel statistics

written:

Data Channel

RIJk

c
2?
C-2

for the narrowband case are r-
*
w.
w.
m
v
w
m,
c%

for i = 0,1,2,...

Reference Channel

d~k = %Jk

2. Broadband

The broadband power is calculated by integrating over frequency.

Since the frequency response function GJ(f) is defined as including the

band cutoffs, the integration is theoretically from zero to infinity. The

signal and noise spectra are combined into a data spectrum and a back-

ground spectrum:

R!’Jk(f) = &’Jk(f) +N;Jk (f)

R& (f) = !&(f) +~’Jk (f) .

With these two definitions the channel statistics for the broadband case

are written:

Data Channel
?!

PIJk =
s

R;Jk(f) df

for i = 0,1,2,... .

@Jk = :@’Jk(f)]2 df

19



Reference Channel

3. Modulated Broadband

The squared average of a modulated broadband signal contains

more power than the signal without modulation. The statistics for detec-

tion of modulated features uses this idea:

Data Channel

1
.

~ijk = [Asi’jk (f) + %’Jk (f)] df

for i = 0,1,2,...

1
@Jk =

~
s

[fk%’jk (f) + R(~k(f)]’ df

Reference Channel

E. Feature Detection

1. Observed Data

the data channel is compared to a threshold valueThe output of

aJk that is a function of the reference channel parameters:

If the data

is assigned

the feature

channel output is larger than

a value one; if the output is

is assigned a value zero.

20
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c
2

The term “feature”
r.

is used here to mean feature “j” (for t-
*

example a Lofar line) on look angle “k” produced by the real target con- W
w
.

figuration (i = O). Features, whether they are of value one or zero, are -1-
*

observed data; they are used to classify the target configuration. m
es

The data channel output is assumed to be normally distributed

with mean ~o~k and variance @Jk . A random number z~k is drawn from a

normal distribution

of the data channel

with zero mean and unit variance. The random output

can be written:

YJk = ~o~k +~c)jk Zjk ●

The Bernoulli distributed random feature xjk is then determined

I1 if YJ~ ~ a~~ (detection)
xjk =

by:

. --
(0 if Y$k ‘ajk (no detection)

The time required to produce a feature is the processor

.

averaging

time TJ. Thus a new feature, of value zero or one, can be produced at a

maximum rate of once every Tj seconds. Due to sonar system design, the

rate may be less than the maximum. The input parameter that controls the

rate is nj: the number of times the feature xJk is produced in’one

computer

2.

time step.

Hypothesized Feature Detection Probabilities

Feature detection probabilities are calculated for each hypothet-

ical target configuration. The probability of detection is the probability

that the normally distributed output of the hypothetical data channel is

greater than the detection threshold:

21



The feature detection probability is the probability that the jth

feature on the kth look angle would be detected if the ith hypothesis

were true. These hypothesized probabilities of detection are used in

conjunction with the observed data to calculate the likelihood of the

data under each hypothetical configuration.
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IV HYPOTHESIS PROBABILITY CALCULATION

The multitarget hypotheses are assigned probabilities called poste-

riors. The posterior probability is the probability that a particular

hypothesis is true, given the observed data. lhe posteriors are random

variables because they are computed from random observed data: the

random xjk’s derived in the previous chapter. To calculate

the likelihoods are first computed and then Bayest rule is

A. Likelihood Calculation

the posteriors,

applied.

The likelihood is the probability that all the data collected through

the nth time step would occur if the ith hypothesis were true:

Prob[D,lH1]. Before the likelihood equations can be derived the x and

p symbols of the sonar model must be altered somewhat to include a time

step index n and an

=
‘JknA

Pijkn =

observation index A:

Bernoulli random variable’;x = O means no
detection, and x = 1 means detection of the
jth feature on the kth look angle for the
lth observation during the nth time step.

Probability that the jth feature on the
kth look angle would be detected during the
nth time step if the ith hypothesis were
true. The value of p is the same for all
observations during a given time step.

A new random variable ~~kn is defined as the number of detections of

the jth feature on the kth look angle during the nth time step:

A = 1,2 ,...,nJ

A
The x-variables are assumed to be independent Bernoulli random variables,

and therefore the ~-variable is binomially distributed with parameters

Pldkn and rq. The probability mass function of a binomial distribution is:
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\5Jkn/

where

Li~k= = Probability of
observations.

exactly ~Jk~ detections in nJ

The equation can also be interpreted
as the likelihood (probability) that the observed
pattern of detections (of the jth feature on the
kth look angle) would occur during the nth time
step if the ith hypothesis were true.

()n~ binomial coefficient= g!(:!~)!

n~ = Number of observations of the jth feature during a
time step.

~Jkn = Number of detections (of the jth feature on the
kth look angle) during the nth time step.

The ~-variables are assumed to be independent random variables over

the index set (j,k,n). Therefore, the joint probability is a product of

the individual probabilities:

where

Prob[D~lHi] = Likelihood that observed pattern of detections
(of all features on all look angles over all
memorable time steps, including the nth step)
would occur if the ith hypothesis were true.

j = 1,2 ,...,jmax

k = 1,2 ,...,kmaxj

n, n-1, n-2, .... n-r+l
...:

m=
-.,,.,

r = Number of time steps for which patterns can
be remembered; r is the length of memory of
the classification process.
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The ratio of two likelihoods is a measure of the diagonistic impact of C

the data on one hypothesis relative to another hypothesis. For example,
x
C?
r

if the likelihood ratio L1/L2 = 10, then the data is ten times more *
.&C

favorable to hypothesis HI than it is to Ha.
&n
1---
T

B. Posterior Calculation

Once the likelihoods are

determined from Bayes’ rule:

-
m
L’%2

calculated, the posteriors are easily

where

Prob[H~] =

Prob[H,l&] =

Prob[H~lDn] =

Prob[DnlHi] Prob[H~~

~Prob[D=lH$] Prob[H$]

The a priori probability that the ith
hypothesis is true. The priors are input
constants that quantify intelligence data
on the targets before any sonar data is
gathered.

The posterior probability that the ith
hypothesis is true after observing
memorable sonar data through the nth
time step.

The posterior probabilities are random, at-the-moment, probability

estimates that are assigned to the hypotheses. The posteriors are not

themselves decision probabilities, although the meaning of the phrase

“probability of classification” could be defined as the posterior prob-

ability. Decision probabilities, such as probability of classification,

are defined in the next section on decision making.
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V DECISION MAKING

The decision making element of the MUSAC II methodology represents

that portion of the classification process that determines the target

classes and directs tactical action. A Bayesian decision criterion that

uses the posterior probabilities and conditional values of decision

outcomes is the basis of the decision making model.

A. Decisions and Values

The analyst must define a set of possible decisions, Bl,...,Bk.

Next a set of values Val[BklHl], of the kth decision, conditioned on the

ith hypothesis being true, must be defined. The values are relative

measures, in that they may represent the conditional monetary value,

economic value, or utility value of the decision outcome. The exact

formulation of the decision set and the value functions will depend on ,

the particular application of the MUSAC II methodology. There are two

general categories of decisions: tactical decisions and classification

decisions.

1.

decisions

Tactical Decisions

At some point in the engagement the observer must make tactical

based on his estimate of the composition of the target group.

An example is the decision to launch a weapon at a particular target.

Consider the example described in Chapter II where the hypothesis set

consists of three possible target types HVU, LVU, and NON and two

possible tracks. Assuming the objective of the observer is to attack the

HVU, a possible decision set for tactical action is:
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BL: attack the target on track #1

Ba: attack the target on track #2

B3: disengage and search for other targets.

Next a set of conditional values of the decision, assuming the ith

hypothesis is true, must be defined. For example, the value for action

B1 for hypotheses that identify the HVU as being on track #1 would be

greater than the value for the hypotheses that identify the LVU or non-

target as being on track #1. The values for decision B3 (disengage)

would reflect missed opportunity values (costs) for hypotheses that

identify the HVU being present. In general, the value set must reflect

the objectives of the observer, and the internal consistency of the

value set is of importance and not their absolute value. Although the

values are somewhat loosely defined, the sensitivity of the decisions

to the value structure can easily be determined. For a given set of

replications of the MUSAC II model, the values of the posteriors can be

saved and then different value structures can be tested with little

additional computational effort.

2. Classification Decisions

The classification decisions can vary from determining the

presence of one or more targets (detection) to completely describing

the target group (designatea single hypothesis as true). As with the

tactical decisions, the observer must define his classification decision

set. Depending on the context of the problem at hand, the decision set

can vary from a very gross description of the target group to a very

detailed description. In the previous example, a possible decision

set is:
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B~: HVU on track #1

B2: HVU on track #2

B3: HVU not present.

If it is assumed that the observer thinks that each decision has equal

importance, then a simple value structure can be

J
1“ if Hi identifies

Val[BllH~] = ,
(0 otherwise

[

1 if H1 identifies
Val[&lH~] =

(o otherwise

defined:

HVU on track

HVU on track

I1 if H$ does not contain an HVU
Val[B~lH~] =

[o otherwise

B. Bayes Decision”Criterion

Bayes decision criterion.is a rule that defines the best

#1

#2

.

decision

by calculating the average (expected)value of each decision given the

observed data:

EVd[Bklu] = I Val[B~lHZ] Prob[HilDU] ,

i

where Prob[HtlD~] is the posterior probability of the ith hypothesis,

given the data Da through the nth time step. The Bayes criterion selects

the decision that has the maximum expected value:

select decision B* such that

EVal[B*lm] = max[EVal[~l~]] .
k
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In the classification decision example, the expected value of each

decision is simply the summation of posterior probabilities for hypothe-

ses related to the decision. The classification decision B* is then

che decision with the highest aggregated probability.

c. Deferred Decision Making

The decision maker may have the option to make the decision B* as

indicated by the Bayes criterion, or to defer the decision and collect

additional information. To model this process, a new function is

defined. The expected value of perfect information given the data,

EVal[PIIDo], is defined as the expected value of the best decision (sum

of the values of the best decision for each hypothesis times the poste-

rior probability of the hypothesis) minus the expected value of the

Bayes decision:

EVal[PIID,] =~max[Val[BklHt]] ProbCH~lDu] - EVal[B*lDn] .
k

i.

In the limit as the posterior probability of a particular hypothesis

approaches unity, the expected value of perfect information approaches

zero.

The decision maker selects decision B* at the fikst

the expected value of perfect information drops below an

if EVal[PIID,] S V. ,

* ‘\
then select decision B .

time step that

input threshold Vo:

If, however, the expected value of perfect information is greater than

the threshold, then the decision maker will defer making a decision and

will collect more information.
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The idea behind this procedure is that if the expected value of the

best decision is considerably higher than the current Bayes decision,

then it pays to continue gathering information to make a better decision

in the future. On the other hand, if the expected value of the best

decision is only a little higher than the current Bayes decision, then

it is better to select decision B* because the gain, in expected value

EVal[PIIDn], is not worth the risk Vo. For example, if a submariner

thought he were closing an ASW capable target group, V. would reflect

the risk associated with counterdetection and might be a relatively large

value. Conversely, if the submariner did not expect a high ASW threat,

V. would be a relatively low value. In the modeling sense V. is a

control parameter--high values cause quick decisions with higher chances

of selecting the wrong decision, and low values delay the decision until

very conclusive acoustic information is incorporated in the posterior

probabilities. V. need not be a constant over the engagement. For

example, in the initial stages of the engagement V. might be a low value

because there is little risk to the

long range. As the observer closes

detection increase and the value of

In the classification decision

can be interpreted as a probability

uncertainty. If Vo is a low value,

a decision must exceed 0.95 for the

will be deferred.

observer because the targets are at

the targets, the risks of counter-

VO should be increased accordingly.

example, the threshold parameter V.

threshold, or a measure of acceptable

say 0.05, then the expected value of

decision to be made, otherwise it

D. Decision Probabilities

From Monte Carlo replications of the MUSAC II model the probability

of making each decision can be estimated. To calculate the probability

of making a specified decision at a particular time step, a new random

variable is defined:
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1 if % =B~att=t,r

xkn~ =
o otherwise .

That is, if the kth decision is made at the nth time step on the rth

replication, xk~~ is set to 1, and is O otherwise. The probability of

making the kth decision at the nth time step can then be estimated by:

where R is the total number of replications. These probabilities can

be summed over the time steps to estimate the probability of making

decision Bk at any time in the engagement; or the PrOb[BkDn] can be

summed over the decisions to estimate the probability of making some

decision at a particular time step. The probability of some decision

at some time is the double sum over time and decisions.

Correct and incorrect classification probabilities are examples of

decision probabilities. In the classification decision example, if the

HVU were truly on track #1, then the probability of correct classifica-

tion is:

Prob[CC] =~Prob[BID.] .

n

The probability of incorrect classification is:

Prob[IC] =
1( )

Prob[BzD.] + Prob[BsD.] ,

n

and the probability of no classification is:

Prob[NC] = 1 -
11

prOb[~kDn] .

nk
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E. Engagement MOE

The expected value of the engagement can be used as an overall

measure of effectiveness (MOE) to study the effects of parameter varia-

tions. To compute the MOE, the actual value of the decision is recorded

and averaged over the replications:

MOE = ~
I

Val[B~lHo] ,

r

where B: is the decision on the rth replication, Ho is the true hypoth-

esis, and R is the total number of replications. In the classification

decision example, the engagement MOE is identical to the probability of

correct classification.

33





m:
z?!

Appendix A

DERIVATION OF SIGNAL PROCESSOR STATISTICS





Appendix A

DERIVATION OF SIGNAL PROCESSOR STATISTICS

A rationale for the channel output statistics is presented in this

appendix. The first section derives general equations for the statistics

of the squared magnitude of a sum of independent random vectors. These

equations are used in various ways in the next three sections; the sec-

tions present the assumptions and derivations for the narrowband, broad-

band, and modulated broadband equations.

A. Statistics of the Squared Magnitude of a Sum
of Independent Random Vectors

The random variable P is defined as:

P = Izxl’
1 ,.

where the~t ‘s are vectors. If the magnitude of xl is the rms pressure

from the ith source, then P represents the power from all sources at a

given frequency.

The above equation

between the vectors:

P

P

can be rewritten as a double sum of dot products

= (?~~) “ (y~)

where Al is the magnitude and 01 is the phase angle of the ith vector.

TWO assumptions are made: the At’s and ~$’s are all independent

random variables; and the O1’s are uniformly distributed from O to 2TT

radians. Under the independence assumptions, the expected value of P is:
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E(P) = ~ E(A?) +~+. E(A~) E(Aj) E(cos %j) ,. .

where e;J = ei - eJ . Under the uniform angle assumption, the expected

values of the cosine terms are zero. Therefore, the expected value of

P is:

E(P) = ~E(A~) .

In other words, the average total power from many independent sources is

the sum of average power from each source.

The expected value of the square of P is:

When

zero

when

none of the indices are equal, the expected value of the argument is

because the expected values of both cosine terms are zero. Likewise,

any three of the indices are equal but the fourth index is not, the

expected value of the argument is zero because the expected value of one

of the cosine temns is zero (the other cosine term has value one). When

all indices are equal, the expected value of the argument is:

E(A~) .

Wheni=jandm =nandi#m, the expected value of

E(A~) E(A;) .

And finally, when i = m and j = n and i # j, and when

and i # j, the expected values of the argument are:

E(A?)

and E(A?)

The expected value of the

E(I$) E(COS2 %J)
I

E(f$) E(COS f)$J COS ej!) .

square of the cosine is 1/2.

the argument is:

i = n and j =m
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Combining the above results, the expected value of ~ is:
2
T;

The square of the expected value of P is:

‘(p) = [wdz =??’E(Af)“A?)

And therefore the variance of P is:

Var(P) = E(p) - E2(P)

Var(P) = ZVar(A?) + ~+~E(A?) E(A7)
i . .

In other words, the variance of the total power from many

.

independent

sources is larger than the sum of the variances of the power from each

source.

The next task is to calculate the covariance between two squared

magnitudes of sums of independent random vectors:

Q = ~~Bm B. COS(~-~n)
mll

where AI el Bm ~ are all independent random variables except that Al is

not independent of B1, and 0~ is not independent of cp~(however,A* is

independent of 61, etc.). The angles f3~and ~ are assumed to be uniformly

distributed from O to 2TTradians.

The expected value of the product is:

where ei~ = e$ - 9J and~n =CPM - v=. When none

equal, or when any three indices are equal but the

of the indices are

fourth is not equal,
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the expected value of the argument is zero. When all indices are equal,

the expected value of the argument is:

When i = j and m = n and i # m, the expected value of the argument is:

When i = m and j = nandi#j, and when i=nandj=mandi #j,the

expected values of the argument are:

E(A$B~) E(AJBj) E(cos eij COS ~lJ~

E(A1B2) E(AjBJ) E(COS f3~icos YJ1)

Combining the above results, the expected value of PQ is:

i- 2zzE(f!iBl) E(AjBj) E(COS &J COS ~iJ) .

i+j

The product of expected values is:

E(P) E(Q) = ZE(A~)ZE(B~)
i J

E(P) E(Q) = ~ E(A~) E(B~) +;+? E(Af) E(B~) .
.

Therefore, the covariance between P and Q is:

COV(P,Q) = E(PQ) - E(P) E(Q)

COV(P,Q) = ~ cov(A~,B!)
i

+2~~E(&B~) E(AjBj) E(COS f)$J COS ((kJ) .

i+j

Note that COV(P,Q) reduces to the previously derived Var(p) when

A$ =Bl andO1 =rf~.
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B. Narrowband Statistics r-
P&e

The equations for p and c? for the narrowband case are derived by
L-
.
w

assuming that

nth frequency

As. A~B et.

f)i cpi in the

the amplitude Ain and phase ~tn from the ith

bin have the statistics as defined in Table

Oiu are being used in the same sense as the

previous section.

source in the ~

10
F

The symbols

symbols Ai B~

The assumptions are discussed below by equation number:

(1)

(2)

(3)

(4)

(5)

The signal power and the noise power are assumed to
equally distributed over the narrowband of width V.

The variance of the signal is zero; this means that

be

the
Lofar line amplitude is assumed to be constant. The
variance of the noise power is the square of the mean
noise power, this is a Gaussian noise assumption.

The bin-to-bin covariance of the signal power is zero
because the amplitude is constant. The covariance of
the noise power is zero because the noise is assumed
to be independent from bin-to-bin.

The expected value of the signal amplitude product is
equal to the expected signal power because the signal
amplitude is constant. By assuming that the bin-to-bin
covariance of the noise amplitude is zero, the expected
value of the product of noise amplitude is equal to the
square of the expected value of the noise amplitude.
The noise amplitude A is Rayleigh distributed with mean
(1-rE(A2)/4)~.

The bin-to-bin covariance of the product of the signal
cosines is 1/2 because the phase angle from a given
source is assumed to be completely correlated from bin
to bin. The covariance is zero for noise phase because
it is assumed to be independent from bin to bin. The
covariances involving signal phase with noise phase are
also zero because they are assumed independent.

The mean power from all sources over all frequency bins is:

,.,
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Table 1

SIGNAL AND NOISE STATISTICS

(1)

(2)

Signal Noise—
i = s+l,....s+r

i =1,2,...,s ~=i s

Var(A~,) = o

Rc
m

()%2
Ri!

(3) Cov(A~n,Afa) = o 0 m+n

(4) m+n

1~ o for j = l,...,s

(5) E(COS 6$J. COS e$~rn)=

(

m+n
o 0 for j = S+l,.=o,s+r

Note: OLjn = ~la - ejn; the difference of the ith and jth phase angles.

WT = Number of frequency bins; bandwidth times averaging time (n = 1,2,..., WT).



therefore, w = S+R

where s = ~.s, i = 1,2,...,s

R =z& k = 1,2,...,r

The variance of the power is computed from the formulae derived in

the previous section. The variance of the power in the nth bin is:

where

The covariance of

cov(Pn, Pm)

2

()[
~

Var(P.) = ~T (S+R)2 - V] ,

cov(Pn, Pm)

cov(Pn, Pm)

cov(Pn> Pm)

v =zs~ i = 1,...,s .

the power in the nth bin with the power in the mth bin is:

+ 2~~E(&.A$m) E(Aj.AJm) E(COS eljn cos eiJm)

i+j

12=
()[Es2-

V] .

i = 1,...,s
j=l 9..=9s

The variance of the power from all bins is:

Var(P) = ~Var(P. ) + ~~ cov(P., Pm)
n= 19*=*9WT
m= 11*.*9WT

Var(P) = ~ [(S+R)2 - vl+(l-~)[s=vl

therefore,

a’ = S2 -v+& SR + &R’ .
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As an example, assume just one signal of power ~ and no noise (R = O),

then the variance is:

2=$-s:=0,

as it should be since the amplitude of the signal is assumed to be

constant. If, however, there are two signals of power ~ and S2 and no

noise, then the variance is:

(+= (~+s2)’ -(g+&) = 2~s2 .

In this case the two signals have interfered randomly with each other

because of their random values of phase angle. If ~ = A? and% =~,

then the minimum power is (Al - A2)2, the maximum power is (Al +&)z,

and the variance due to random values inbetween is 2 A~A~ .

The distribution of power caused by random interference is not

normally distributed. If, however, there are many independent signals,

then the total power is approximately normally distributed (usually)

with mean p and variance o’ as derived above. The normal distribution

assumption is not very good when there are only a few sources, as will

be the case with a MUSAC II application. There is, however, a compen-

sating effect that will tend to reduce the errors involved by assuming

a normal distribution. The most critical time for having an accurate

detection model occurs when the lines are just being detected. In this

case the signals are all small and the variance is approximately ~/WT.

A normal distribution for the small signal case is reasonable because

the power is averaged over WT bins.
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In addition to the question of the shape of the distribution, there

is also the question of observation-to-observationindependence. It is

reasonable to assume that the noise is independent from one observation

to another, but the source signals may not be independent. This is

because the random phase angle may not change fast enough compared to the

averaging time. The argument for assuming independence uses the same

point as.raised in assuming a normal distribution: for the cases of

interest, the Lofar signal will be small; thus the noise terms in the

variance will dominate, and therefore the observation-to-observation

independence of noise will also dominate.

The mean and variance of the data channel were derived as:

P = S+R

& = S2-V+&R+&R? .

The equations for the

by simply setting the

mean and variance of the reference channel are found

signal terms to zero:

V* =R

Detection of a Lofar line is performed by comparing the narrowband in

question to an average background that is near the narrowband frequency.

The v*-equation assumes that the average background is caused entirely by

broadband noise: there may be broadband target noise in the background but

no Lofar lines. This is a reasonable assumption if the various lines are

spread out enough on the display for there to be area visible on either

side of any line. The value of u@ is not the variance of the average

background. It is, instead, the variance of just one sample of background;
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there may be many samples of background, all of them used to compute the

average background value. The idea behind the o‘-equation is that if the

signal sources were removed, then the data channel would have the same

variance as the reference channel.

The detection threshold is assumed to be adequately described by:

The threshold is not a random variable in the sense that the output of

data channel is a random variable; however, the threshold does change in

response to the changing geometry and to the random process that generates

the input values of source level, propagation loss, and noise level. The

above definition of the detection threshold is equivalent to assuming a

constant false alarm threshold. This means that if there is no Lofar line,

then the random output from the data channel will exceed the threshold at a

constant rate of:

f =

where f =

At =

n =

d =

c. Broadband Statistics

co

n 1
r
~. ~ #dx——

A. -
“L42TT ;

false alarm rate (number/min)

time step duration (rein)

number of observations in a time step

number of reference channel standard
deviations the threshold is set above the
reference channel mean.

The equations for ~ and O* for the broadband case are derived by

assuming that the amplitude A:n and phase O1m from ith source in the nth

frequency bin has the following statistics:

46



(2)

(3) Cov(A?O, A~D) = o n+m

O!
n+m

i+j

where elja = et. - eja; the difference of the ith and jth
phase angles in the nth frequency bin.

Af = I/T; width of the frequency bin (Hz).

T = averaging time (see).

R;. = mean square power from the ith source in the
nth frequency bin of width Af.

The first equation is a definition of symbols. The second equation is a

Gaussian noise assumption. The third equation assumes that the noise

power in one frequency bin is independent of the noise in another bin.

The final equation assumes that the difference in phase angles between

two sources is also independent from bin to bin.

The mean power from all frequency bins is:

I

therefore

where

The sum over

over a power

frequency of

IJ = sR’(f) df

R’(f) = ~R:(f) . !

small frequency bins has been approximated‘bythe integral

density function: R~(f~) - Rin, where fn is the center

the nth frequency bin.
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The variance of the power is computed from the formulae derived in

Section A. The variance of the power in the nth frequency bin is:

The covariance of the power in the nth bin with the power in the mth bin

is zero because of the independence assumptions. Therefore, the variance

of the total power is:

Var(P) = ~ Var (P,)

Var(P) = [1+~~R/n 2 Af
n~

therefore 0-2=$
s

[R’(f)]2 df

where R’(f) = ~ R;(f) .

The sum over small frequency bins has been approximated by the integration

over a squared power density.

The equations for the broadband statistics for the data channel are:

S< = ~ [R’]’ df

where R’ = S’ +N’; and where S‘ is a sum of target spectra and N’ is a

sum of noise spectra. The equations for the broadband statistics for the

reference channel are derived by assuming that the target spectra are

reduced by a side lobe factor; the target spectra are not set to zero.
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Thus, if S’* is the sum of target spectra when

side lobes, then the reference spectrum is:

~/* = S’* + N’

and the mean and variance of the reference

P =
s
+R’* df

s
# = $ [R’*]2

c
all targets are in the =

r;
r-
*

channel is:

df .

The reference channel statistics are defined this way so that the phenom-

enon of side lobe masking

nearby target will drive

data channel output will

The net effect will be a

will be properly represented. The presence of a

the reference channel mean up and therefore the

have to satisfy a higher detection threshold.

low probability of detection when strong side

lobe interference is present.

D. Modulated Broadband Statistics

The mean and

assuming that the

variance of the data channel are derived by first

modulated voltage waveform from the array is given by:

x(t) = a(l -t m cos @t) cos u ,

where a is the amplitude of

and m is the modulation index

$* The modulated voltage can

the carrier wave of angular frequency w,

of the modulating wave of angular frequency

also be written as:

x(t) = y

Since there is a band

the wave of amplitude

cos (u)+)t + a cos wt + * cos (wi$)t .
L

of waves with approximately the same amplitude a,

ma/2 and angular frequency w + @ (the third term in

the above equation) will interfere with a carrier wave of amplitude a and

frequency w + ~. The average power in the interference pattern is the
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la
()

1 ma2
sum of powers: ~ a + ~ ~ , because the two waves are incoherent.

Another modulated wave of carrier frequency w’ = w + 26 will have a low

side component of amplitude ma/2 and angular frequency w’ - @ = w + ~.

Thus the total power at frequency f = (w+$)/2n is:

,

If the definitions: M = m’ and Stdf = a2/2 are used, then the average

signal power density at frequency f is:

l?’ = S’+~MS’

By assuming that the value of M changes slowly

@ is small compared with w, the expression for

can be integrated over a frequency band:

.,f~
P =

\ P’ df .

●

with frequency and that

the average power density

..)

The integration limits, fl and f2, must be large compared to ~/2TT.

The noise spectrum N’ can be included in the integrand of the above

equation because the noise is assumed to be independent of the signal.

With the addition of noise, the mean power in the data channel is:

and the mean of

signal to zero:

.

P = us’++ 1MS’ +N’ df ,

the reference channel is found by setting the modulation

P* = s[S’+ N’]df .

The variances for the two channels are similar to the broadband case:

S[ 1@ =$’ S’+; MS’+ N’2df

~$=1
\

~ [S’+ N’]2 df
L

where T is the averaging time.
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